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Fossil elkhorn corals, Acropora palmata, were discovered at the Flower Garden Banks (FGB) on the shelf-margin 
off the Texas coast in 2006. Radiocarbon dating revealed an A. palmata-dominated community aged 
10,157–6838 cal BP. The Acropora reefs correspond in time to an interval of warmer-than-present sea-surface 
temperatures (SSTs) during the Holocene thermal maximum (HTM). The subsequent demise of A. palmata in 
the middle Holocene was a consequence of the inability of the shallowest reef facies to keep pace with rising 
sea level following complete submergence of the banks, possibly coupled with decreasing SSTs following the 
HTM. In 2007, the first fossil staghorn corals, Acropora cervicornis, were discovered at the FGB. Based on radiocar
bon dating of these corals to 1027–211 cal BP, it appears that populations of A. cervicornis flourished in deeper 
waters (~25–32 m depth) on the edges of the banks until the peak of the Little Ice Age (LIA) when they died, pre
sumably from cold-water exposure. The recent return of A. palmata to reefs of the FGB associated with increasing 
sea temperatures appears to be both an echo of the past and a harbinger of the future. 

© 2013 Published by Elsevier B.V. 
1. Introduction 

Coral assemblages on many reefs of the western Atlantic–Caribbean 
region have been highly volatile in recent decades. By contrast, the ben
thic communities at the Flower Garden Banks (FGB), two shelf-margin 
reefs off the coast of Texas, have been remarkably stable during this time 
(Aronson et al., 2005). Recent, decadal-scale stability at the FGB, however, 
belies centennial- to millennial-scale dynamics that are critical to under
standing the history of these reefs and their future in a warming ocean. 

Since the inception of long-term monitoring at the FGB in the late 
1970s, the coverage of living scleractinian corals at the FGB has 
remained consistently in the range of ~40–60%. At the same time, 
coral cover has declined precipitously elsewhere in the western Atlantic 
(Gardner et al., 2003; Schutte et al., 2010), primarily because of a 
disease-induced, regional mass mortality of the ecologically and geolog
ically dominant components of Caribbean reefs: the acroporid corals 
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(Aronson and Precht, 2006). The primary reason coral cover did not 
decline at the FGB was that the coral assemblages did not contain 
acroporids in the 1970s. Regional loss of the acroporids, therefore, did 
not affect the ecology of the FGB (Aronson et al., 2005). The recent 
discovery of living colonies of the elkhorn coral Acropora palmata at 
the FGB (Zimmer et al., 2006), combined with a known history of 
post-glacial sea-level rise in the Caribbean and GOM (Toscano and 
Macintyre, 2003; Törnqvist et al., 2004; Milliken et al., 2008), and pub
lished examples of latitudinal expansion of acroporid-dominated reefs 
during the early to middle Holocene (Precht and Aronson, 2004), led 
us to the hypothesis that an Acropora-dominated reef framework un
derlies and forms the foundation of the living reef community at the 
FGB. In this paper we report the discovery of fossil acroporid corals at 
the FGB and use their ages and stratigraphic positions to reconstruct 
the ecological history of the Banks. 
2. Regional setting 

The FGB are located 175 km off the coast of Texas in the north
western Gulf of Mexico (GOM). They form part of a discontinuous  
arc of reefal banks along the outer margin of the continental shelf 
(Rezak et al., 1985). These banks are the northernmost coral reefs on 
the continental shelf of North America (Rezak et al., 1985). Although 
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coral-dominated benthic communities exist on neighboring banks (e.g., 
Bright Bank, McGrail Bank, and Sonnier Bank), Blanquilla Reef north of 
Veracruz (980 km away) and the Alacran Reef Complex on the northern 
Campeche Bank (690 km away) are the nearest emergent coral reefs in 
the GOM (Moore, 1958; Kornicker et al., 1959; Schmahl et al., 2008). 
The large-scale topographic features upon which the reefs of the FGB 
grow were created by salt diapirs of Jurassic Louann origin (Rezak 
et al., 1985; Slowey et al., 2008). Understanding the connections of 
the FGB reefs to other reef systems in time and space is vital to manag
ing and protecting their resources for future generations (Ritchie and 
Keller, 2008). 

2.1. Oceanography 

The main surface currents in the GOM include the Yucatan Current, 
the Loop Current and the Mexican Current. The Yucatan Current enters 
the GOM from the Caribbean through the Yucatan Channel (Fratantoni, 
2001). Once in the Gulf of Mexico, the Yucatan Current initially follows 
the continental shelf-break from 21°N to 24.5°N and then changes to a 
northwesterly direction around 23.5°N, 87°W where it joins the Loop 
Current (Molinari and Cochrane, 1972). The Loop Current is character
ized by a clockwise surface flow that extends northward into the GOM 
and then exits to the south via the Strait of Florida and flows into the 
Florida Current (Lugo-Fernández, 1998). The position of the Loop Cur
rent is variable and mesoscale, anticyclonic eddies (rings) frequently 
separate from, or “spin off,” the main current. These eddies drift to the 
west, often sitting over the FGB region for extended periods (Molinari 
et al., 1977; Sturges and Evans, 1983; Lugo-Fernández, 1998; Sturges 
and Leben, 2000; Schmahl et al., 2008). In the westernmost GOM, a 
western boundary current, the Mexican Current, related to wind-curl 
forcing (Sturges and Blaha, 1976) influences the FGB as does the Loop 
Current and its resultant rings (Nowlin et al., 1998; Lugo-Fernández, 
2006; Deslarzes and Lugo-Fernández, 2007; Schmahl et al., 2008). 

Surface wind patterns and resulting sea state are variable but 
show no seasonal cycle in the northern GOM (de Velasco and 
Winant, 1996). There is a general trend of wave propagation from 
ESE-to-WNW over the FGB (Rezak et al., 1985; Lugo-Fernández, 
1998), correlating with both wind-vector data (de Velasco and 
Winant, 1996) and actual sea-surface direction and velocity measure
ments calculated from ships' drift records (Lugo-Fernández, 2006). 

Water temperatures on the reef caps range from ~18 °C in winter 
to ~ 30 °C in late summer (Etter and Cochrane, 1975; Rezak et al., 
1985; Lugo-Fernández, 1998; Precht et al., 2006). Although salinities 
measured at the FGB are representative of average open-ocean GOM 
values (Lugo-Fernández, 1998; Wagner and Slowey, 2011), persistent, 
westward surface-flow regimes show the presence of Mississippi– 
Atchafalaya River water (Salisbury et al., 2004), periodically affecting 
abiotic conditions on the reef caps (Deslarzes and Lugo-Fernández, 
2007). Salinity in the FGB region ranges from 35–36 psu in December 
to 30–32 psu from late April to July (Nowlin et al., 1998). The transport 
of a river–seawater mix over the FGB probably explains low salinity 
values which are also associated with an increase in light attenuation 
observed as “murky, green-brown or discolored waters” over the reefs 
(Deslarzes and Lugo-Fernández, 2007). Otherwise, most of the time, 
the reef cap is bathed by clear oceanic water (McGrail et al., 1982). Trop
ical storms and hurricanes regularly pass within 200 km of the FGB, 
resulting in localized impacts on the flora and fauna (Lugo-Fernández 
and Gravois, 2010). 

2.2. Reef communities at the Flower Garden Banks 

Since the first detailed scientific observations in the 1950's our 
ideas regarding the reef communities of the FGB's have changed 
and  continue to evolve (see  Parker and Curray, 1956). The living 
reefs of the FGB comprise a deeper-water community at depths N18 m, 
which is presently characterized by high stony-coral cover, in the 
range of 40–60%, and low macroalgal cover (Bright et al., 1984; Rezak 
et al., 1985; Aronson et al., 2005; Precht et al., 2006, 2008a; Hickerson 
et al., 2008; Schmahl et al., 2008; Johnston et al., in press). The reef sur
faces are dominated by massive corals, primarily of the genera Orbicella, 
Montastraea, Diploria, and Porites. The present-day coral assemblages 
are similar to those of Bermuda, where values of coral cover can also 
reach or exceed 50% and the same genera of massive corals dominate 
the benthic community (Dodge et al., 1982; Logan, 1988; Smith et al., 
2002; Creary et al., 2008). Species richness of hard corals is lower at 
the FGB than on most Caribbean reefs, with 21 species of scleractinians 
having been identified to date (Hickerson et al., 2008). The primary rea
son for this faunal diminution is cold-temperature limitation north of 
the tropical reef belt (Bright et al., 1984; Porter and Tougas, 2001). 

2.3. Importance of acroporid corals 

During the Late Quaternary, two coral species of the genus Acropora 
have been the most important reef-builders in the Caribbean (Goreau, 
1959; Jackson, 1992; Aronson and Precht, 2001a). A. palmata and 
A. cervicornis were dominant space occupants of fore-reef habitats on 
most reefs throughout the Caribbean region (sensu lato) for thousands 
of years until the recent past (Aronson and Precht, 2001b). The 
acroporids are among the most sensitive Caribbean corals to cold-
temperature stress and generally do not occur in areas where winter
time sea-surface temperatures (SSTs) drop below 18 °C (Mayer, 1914, 
1915; Shinn, 1966, 2008). These areas include the reefs of Bermuda 
(Dodge et al., 1982; Logan, 1988; Shinn, 2008), the Florida Peninsula 
north of Miami (Vaughan, 1914; Jaap, 1984; Porter, 1987; Shinn et al., 
1989; Precht and Aronson, 2004; Precht and Miller, 2007), the north
ernmost Bahamas (Lighty et al., 1980; Roberts et al., 1992; Macintyre, 
2007); and the FGB (Bright et al., 1984; Rezak et al., 1985; Aronson 
et al., 2005). Based on presence/absence data from the northernmost 
portions of the Florida reef tract, it appears that A. palmata may be 
more cold-sensitive than A. cervicornis (Goldberg, 1973; Burns, 1985; 
Porter, 1987; Precht and Aronson, 2004). 

In addition to temperature, other factors may be responsible for 
the absence of acroporid corals at the FGB. The reef caps are too 
deep, at N18 m, for shallow-dwelling species, especially A. palmata, 
to compete with deeper-dwelling species. Also, the remote and iso
lated nature of the FGB requires long-distance migration of viable 
larvae, limiting the recruitment potential of species such A. palmata 
and A. cervicornis, which broadcast their gametes into the water col
umn (Baums et al., 2005, 2006; Lugo-Fernández, 2006). 

Aronson et al. (2005) cited three main reasons for the exceptional 
present-day condition of the FGB reefs: (1) the water depth of the reef 
caps, which buffers them from the effects of storm waves and anoma
lously low winter and high summer sea temperatures; (2) the remote, 
offshore location of the reefs, which limits human pressure and contin
ually exposes them to clear oceanic waters; and (3) the historical ab
sence of acroporid corals. The latter reason may seem counterintuitive, 
but because most of the recent change on other Caribbean reefs has 
consisted of the acroporids being subtracted en masse from coral as
semblages (Aronson and Precht, 2001b), coral cover has remained 
high on reefs where massive corals dominated before and after the 
loss of acroporids elsewhere (cf. Precht and Miller, 2007). 

2.4. Discovery of living Acropora at the Flower Garden Banks 

The first observations of living A. palmata were made on the reefs of 
the FGB in 2003 and 2005 (Zimmer et al., 2006). These discoveries were 
also the deepest Caribbean records of extant A. palmata, at water depths 
down to 23 m (Fig. 1). 

As previously noted, the FGB are located more than 690 km from the 
nearest emergent reefs dominated by Acropora (Jordán-Dahlgren and 
Rodríguez-Martínez, 2003; Schmahl et al., 2008). Ocean current models 
indicate that the reefs in the southern GOM are the most likely sources 
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Fig. 1. Underwater photograph of recently discovered living colony of Acropora palmata at
 
23 m depth on the East Flower Garden Bank (see Zimmer et al., 2006).
 
Photo taken by G.P. Schmahl in August, 2012.
 
of larval immigration to the FGB (Bright et al., 1984; Lugo-Fernández, 
2006); however, larval supply from the Meso-American reef tract, 
Cuban reefs, and the Florida reef tract are also possible (Rezak et al., 
1990; Biggs, 1992; Lugo-Fernández et al., 2001; Lugo-Fernández, 
2006; Johns and Lamkin, 2008). Initial results of genetic analysis reveal 
that the source of the recent A. palmata colonies is the western Carib
bean (Iliana Baums, unpublished data, 2012). No further subdivision 
of the western Caribbean population is apparent and thus more pre
cise assignment to potential source locations is presently not possi
ble (see Baums et al., 2005, 2006). Ayre and Hughes (2004) noted 
that the virtual absence of long-distance dispersal of corals to geo
graphically isolated reefs renders them extremely vulnerable to var
ious types of disturbance; however, one of the most important 
aspects of the discovery of living acroporid corals at the FGB is the 
implication that A. palmata larvae had to be competent for sufficient
ly long durations allowing them to recruit to the surfaces of the reef 
caps, wherever their source locations were. The same can be said for 
the Orbicella annularis species complex, which also broadcasts its 
gametes into the water column and is presently the dominant spe
cies at the FGB (see Szmant and Meadows, 2006). Hence, in addition 
to temperature, dispersal and larval duration may help explain the 
ranges  of  these corals  in  time and  space (Davis et al., 1998; Gaylord 
and Gaines, 2000; Mora et al., 2003). 

2.5. Post-glacial sea-level rise and reef growth 

Understanding the response of reefs to sea-level rise since the last 
glacial maximum (LGM) is critical to deciphering the history of reef 
development at the FGB. At the peak of the LGM ~ 18 ka BP, sea 
level was ~120 m below present (Fairbanks, 1989; Peltier, 2002; 
Gehrels, 2010). As the ice caps melted and sea level rose in the latest 
Pleistocene, coral reefs in the tropics responded by moving poleward 
and expanding upslope. The accommodation space, which is space 
available for the reef to grow upward, increased continuously and 
coral populations responded, creating characteristic geometries and in
ternal facies mosaics (Neumann and Macintyre, 1985; Schlager, 2005). 

A. palmata typically lives in water depths of 5 m or less and grows 
rapidly (linear extension rate ~10–20 cm yr−1), making it one of the 
most useful proxies of sea level (Gladfelter et al., 1978; Lighty et al., 
1982; Toscano and Macintyre, 2003; Peltier and Fairbanks, 2006). 
At times, no matter how rapidly individual corals grew, the rate of 
sea-level rise outpaced the ability of the carbonate-sediment factory 
to keep up and the result was a shift, or backstepping, of the reef 
facies to more shallow, shoreward positions on the shelf (Lighty 
et al., 1978; Hubbard et al., 1997; Macintyre, 2007; Hubbard, in 
press). 

2.6. Range expansions during the Holocene thermal maximum 

In southeastern Florida, a series of submerged, shore-parallel, fossil 
reef terraces reveal a precedent for the recent range expansion of 
Acropora (Precht and Aronson, 2004). This nearly continuous barrier 
reef system extended northward from Miami to Palm Beach County in 
the early to middle Holocene (Banks et al., 2007; Finkl and Andrews, 
2008). The internal architectures of these reefs are replete with 
acroporid corals and the shore-parallel terraces represent a series of 
backstepped reefs (Precht et al., 2000). During the Holocene thermal 
maximum (HTM) (COHMAP, 1988; Ruddiman and Mix, 1991; Lin 
et al., 1997; Kerwin et al., 1999; Haug et al., 2001), SSTs were warmer 
than today in the western Atlantic, and during this period Acropora
dominated reefs were common along the southeastern coast of Florida 
(Lighty, 1977; Lighty et al., 1978; Precht and Aronson, 2004). Calibrated 
dates recovered from fossil A. palmata samples indicate that the 
outer reef accumulated from ~ 10.6–8.0 ka BP and the inner reef 
from ~7.8–5.6 ka BP (Toscano and Macintyre, 2003; Banks et al., 
2007). These dates correspond remarkably with those proposed for 
the HTM (10.5 to 5.4 ka) by Haug et al. (2001). The HTM was also the 
period of optimum reef development for the extant Florida reef tract 
(Shinn et al., 1989; Lidz et al., 1997; Toscano and Lundberg, 1998). 

In apparent response to climatic cooling in the late Holocene (de 
Menocal et al., 2000; Jessen et al., 2005), the northern limits of the 
Acropora species contracted 150 km south to Fowey Rocks (Precht 
and Aronson, 2004). In historical times, Fowey Rocks was the north
ernmost emergent reef of the Florida reef tract as well as the north
ernmost extent of  A. palmata (Vaughan, 1914; Jaap, 1984; Porter, 
1987; Shinn et al., 1989; ABRT 2005). Similar range expansion and 
contraction of a barrier reef dominated by A. palmata was noted off 
Abaco Island in the northernmost Bahamas (Lighty et al., 1980; 
Macintyre, 2007). 

The spatial and temporal response of the Acropora species to cli
mate provides a context for interpreting their past and present geo
graphic distribution (see also White et al., 2008). The HTM also 
correlates with the latitudinal expansion of coral reef and mangrove 
ecosystems in the Pacific (Taira, 1979; Veron, 1992; Veron and Minchin, 
1992; Mildenhall, 2001; Twiggs and Collins, 2010; Woodroffe et al., 
2010; Hongo, 2012). Evidence from both terrestrial and coastal regions 
shows that warming during this interval allowed many species to 
migrate poleward (Clarke et al., 1967; COHMAP, 1988; Salvigsen et al., 
1992; Hjort et al., 1995; Dyke et al., 1996; Dahlgren et al., 2000; Carbotte 
et al., 2004; Jansen et al., 2009). 

Although reefs at their latitudinal extremes have responded rap
idly to climate flickers, results from coring and outcrop studies in the 
tropical Caribbean show the persistence of coral assemblages through 
time (Aronson and Precht, 2001a). The evidence from these Acropora
dominated reefs supports the notion that tropical oceanic climates 
have been buffered from extreme climatic variability throughout 
the Holocene (Macintyre et al., 1977; Fairbanks, 1989; Aronson and 
Precht, 1997; Gill et al., 1999; Wapnick et al., 2004; Greer et al., 2009). 

3. Methods and materials 

3.1. Collection/location of samples 

All samples described in this report were collected by scuba diving 
from the East FGB, located approximately 193 km southeast of 
Galveston, Texas. The East FGB encompasses 67 km2, sloping from 
its shallowest point on the reef cap at 18 m depth to the muddy sea-
floor at 120–140 m (Gardner et al., 1998). 
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3.2. Radiocarbon dating 

To obtain the most accurate radiocarbon dates possible, unaltered 
coral samples in good taphonomic condition were chosen for analysis. 
The samples were air-dried, then cleaned with a steel brush to remove 
calcareous epibionts and submarine cements, etched with dilute hydro
chloric acid, and oven-dried at 100 °C. The prepared coral samples 
were sent to Beta Analytic, Inc., Miami, Florida where they were 
radiocarbon-dated using standard techniques. Dates were calibrated 
to calendar years before 1950 (cal BP) after correcting for isotopic frac
tionation and the marine reservoir effect (Stuiver et al., 2005). The stan
dard reservoir correction of 300–500 yr and the local reservoir 
correction of − 36 ± 35 yr for the Gulf of Mexico (Wagner et al., 
2009) were applied. In total, three samples of A. palmata and four sam
ples of A. cervicornis obtained from the East FGB were used in the 
analysis. 

3.3. Sea-level reconstruction 

High-resolution, multibeam bathymetry was obtained from the 
U.S. Geological Survey (USGS) in Universal Transverse Mercator 
15 N at 5-m spatial resolution, in raster grid form. Details of data cor
rection and calibration can be found in Gardner et al. (2002). These  
high-resolution multibeam data have an associated error of ± 
0.5 m. The ESRI ArcGIS 9.2.1 software package was used to create 
Fig. 2. Depiction of changing water levels around and eventually covering the East Flower Gar
struction with water depths of −120 m (A), −60 m (B), −30 m (C), and −10 m (D) graphic
Sea level data are taken from Toscano and Macintyre (2003) and superimposed on high-resolu
and edit rasters and layers. Bathymetry data were used to generate a 
greyscale hillshade raster in ArcMap, using the Hillshade tool from the 
3D Analyst Toolbox. The raster files were then imported into ArcScene 
and assigned base heights from the original bathymetry dataset to ob
tain 3D relief. The bathymetry raster symbology was set as a stretched 
color ramp and 30% transparency with the 3D hillshade raster layered 
underneath. A shapefile  with  the  same coverage as  the  bathymetry  ras
ter was generated in ArcMap to represent water level, and a value of 
‘0 m’ was assigned to each cell. This layer was then imported into the 
3D environment in ArcScene, where the base height could be adjusted 
as a constant value to represent various water depths, where ‘0 m’ rep
resented current sea level and ‘−35 m’ represented 35 m below cur
rent sea level. Meters below current sea level and year data were 
obtained from Toscano and Macintyre (2003). 

A grid was created as a graphic layer in ArcScene to provide refer
ence for changing water levels. The upper boundary of the grid rep
resents current sea level (0 m), and the lower boundary represents 
the deepest portion of the seafloor provided in the bathymetry 
dataset, 147 m depth. Values were added to the grid using the 3D 
Graphic Editor Toolbar. Images were exported from ArcScene as 
JPEGs with water level represented at 120, 60, 30 and 10 m depth 
(Fig. 2A–D). The bathymetric data are based on present-day conditions; 
however, the actual thickness of the Holocene section is unknown. 
Therefore, the total height of the FGB in our sea-level reconstruction 
through time is probably 5–10 m thicker than it actually was. 
den Bank associated with post-glacial sea level rise in the Gulf of Mexico. Sea level recon
ally represented in ArcScene.
 
tion, multibeam bathymetry obtained from the USGS (see Gardner et al., 2002).
 

image of Fig.�2
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4. Results 

In June 2006, while assessing the southeast corner of the coral cap of 
the East FGB (27°54.49′N, 93°35.81′W), we examined an open tunnel 
under a series of coalesced reef buttresses that was approximately 
4 m long and 2 m in diameter, which exposed in cross section a 3-m 
thick vertical section of the reef understory. At 21 m depth within that 
exposure, we found large branches and trunks (N1 m in length) of fossil 
A. palmata preserved in growth position and in good taphonomic condi
tion (Fig. 3A). In addition, broken and transported A. palmata blades, 
also in good taphonomic condition, were admixed in the adjacent fossil 
reef sediment as rubble. Lewis (1984) described an almost identical ar
rangement of the fossil remains of A. palmata in the reef fabric underly
ing the present-day reef community in Barbados. Continued exploration 
of the East FGB in the summer of 2007 revealed fossil specimens of 
A. palmata under the reef cap at a number of locations in depths of 
21–26 m (Fig. 3B). Taphonomically altered samples of A. palmata were 
also recovered in 2007 from the West FGB at similar depths (Zimmer 
et al., 2010). 

In 2007, surveys along the southeast flank of the East FGB at 
N28 m depth revealed erosional blowout features formed by the pas
sage of Hurricane Rita in 2005 (Hickerson et al.,  2008;  Precht et al.,  
2008b; Robbart et al., 2008). These crater-like depressions were 
composed primarily of rubble of the branching coral Madracis 
auretenra (= Madracis mirabilis; Locke et al., 2007, but see Veron, 
2013) admixed with coarse-grained reef sediment. Within these fea
tures, we discovered the first colonies of branching A. cervicornis to 
Fig. 3. Underwater photograph of sub-fossil colony of Acropora palmata found in growth positio
of A. palmata collected from a cave at −23 m on the EFGB in 2007. Note thick, post-mortem ac
Underwater photograph of sub-fossil A. cervicornis colonies found in growth position in an open
covered with living epibionts and endolithic boring sponges (C). Individual branch of A. cervico
have been found at the FGB (Fig. 3C). Follow-up surveys revealed that 
this subsurface assemblage of fossil A. cervicornis was continuous 
over a relatively large area in water depths ranging between 26 
and 32 m. Although relatively deep, these samples are still within 
the depth range for A. cervicornis from Jamaica reported by Goreau 
and Wells (1967). Interspersed in the field of M. auretenra we also 
found cemented thickets of fossil A. cervicornis exposed directly at the 
reef/water interface in water depths N28 m (Fig. 3D). The well-
cemented branches of A. cervicornis were overgrown by crustose coral
line algae and covered with abundant macroalgae, primarily Lobophora 
variegata. Within these subsurface deposits we also found skeletons of 
the branching coral Eusmilia fastigiata, which were the first ever ob
served at the FGB (Zimmer et al., 2010). E. fastigiata is absent from the 
living community at both the FGB and Bermuda (Logan, 1988; 
Hickerson et al., 2008). 

Radiocarbon dating of the A. palmata samples yielded calibrated ages 
of 10,157–6838 cal BP. Radiocarbon dates of the A. cervicornis samples 
revealed calibrated ages of 1027–211 cal BP (Table 1). 

5. Discussion 

At the peak of the LGM, sea level was ~120 m lower than today. This 
placed the salt-diapiric structures of the FGB at the position of the 
paleoshoreline (Fig. 2A; Holmes, 2011), where they towered more 
than 100 m above the surrounding coastal plain (see Edwards, 1971; 
Rezak et al., 1985). At the end of the LGM, as the glaciers melted and 
sea level began to rise, the bases of the FGB structures were flooded, 
n at −21 m on the East Flower Garden Bank (EFGB) in 2006 (A). Individual branch (blade) 
cumulation of epibionts, sediment, and marine cement (darker gray) covering colony (B). 
 cave directly beneath the reef surface at −30 m on the EFGB. These exposed colonies were 
rnis collected from erosional blowout feature at −28 m on the EFGB in 2007 (D). 

image of Fig.�3
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Table 1 
Radiocarbon dating of Acropora samples from the East Flower Garden Bank. 

Sample # Beta sample # Water depth Subsea depth of sample Species Radiocarbon age 2-sigma calibrated range 
(m) (m) (cal yr BP) (cal yr BP) 

06–01 218521 21 21 Ap 6838 7014–6655 
07–02 233391 26 26 Ap 10,157 10,320–9912 
07–03 233392 23 23 Ap 7355 7467–7240 
07–04 233393 29 30 Ac 1027 1170–903 
07–05 233394 30 31 Ac 519 628–428 
07–07 231801 28 29 Ac 295 436–131 
07–08 231802 28 28 Ac 211 365–49 
isolating them from the retreating shoreline (Fig. 2A). Sedimentary re
cords from nearby Orca Basin revealed that from 18.0 to 13.0 ka BP, 
the northern GOM was dominated by detrital sedimentation as most 
of the meltwater from the North American continent was funneled 
through the southern meltwater route down the Mississippi River 
(Emiliani et al., 1978; Sionneau et al., 2010). During this period, the 
northwestern GOM was turbid, cool, and inhospitable to coral reef 
growth. 

As the Laurentide ice sheet continued to retreat, the meltwater was 
diverted from its southern route to the northeast Atlantic via the Hud
son River and the Saint Lawrence Seaway. Sedimentological observa
tions from the northwestern GOM indicate that the shutdown of the 
southern meltwater route remained permanent after 12.7 ka BP 
(Montero-Serrano et al., 2009; Sionneau et al., 2010; Flower et al., 
2011). Increased transport of Caribbean surface waters into the GOM re
gion also started around this time (Sionneau et al., 2010; Flower et al., 
2011). The combination of decreased influence of seasonally cold conti
nental air masses over the northern GOM as the glacial shoreline 
retreated (Flower et al., 2004) coupled with meltwater discharge being 
diverted out of the GOM and increased input of warm, Caribbean waters 
into the GOM likely created conditions favorable for coral reef develop
ment (Holmes, 2011). A single sample of the coral Siderastrea siderea, 
dredged from the surface of Dream Bank on the western edge of the 
Texas shelf, was radiometrically dated to ~12,000 cal BP (Rezak et al., 
1985; Slowey et al., 2008). Although S. siderea is eurytopic and can grow 
at temperate latitudes (Macintyre and Pilkey, 1969),  the sample suggests  
that coral growth had initiated in the northern GOM by 12.0 ka BP. We 
speculate that fringing reefs began growing on the FGB at that time, espe
cially on their eastern, windward margins. The islands that represent the 
FGB were now isolated on the continental shelf ~80 km from shore. They 
had about 33 m of relief above the waterline, with depths to the sur
rounding ocean floor of about 70 m (Fig. 2B). 

The rate of sea-level rise was extremely rapid throughout the 
early phases of deglaciation. Reef growth responded by backstepping 
to higher, shallower positions on the banks. By 11.3 ka BP (the end of 
Meltwater Pulse 1B; Fairbanks, 1989), the tops of the FGB islands 
were about 20 m above sea level. From 10.5 to 5.0 ka BP, northward 
movement in the average position of the Intertropical Convergence 
Zone (ITCZ) had enhanced easterly winds, transporting greater 
quantities of Caribbean surface waters into the GOM (Hodell et al., 
1991; Poore et al., 2003). Faunal-based estimates indicate that win
ter SSTs were as much as 2 °C warmer than modern during the mid
dle Holocene throughout the Caribbean and GOM (Lin et al., 1997; 
Poore et al., 2003) with maximum warming occurring between 8 
and 7 ka (LoDico et al. 2006). This interval, was optimal for the devel
opment of shallow, warm-water, reef-coral assemblages. Conditions 
during the HTM allowed populations of Acropora to emerge at the 
FGB. As with the Holocene reefs of southeast Florida, A. palmata was 
the dominant framework-building coral at the FGB throughout the 
HTM. High resolution bathymetric surveys reveal what appears to be 
relict, shallow-water, ESE-to-WNW trending spur-and-grove features 
on the bank tops (Precht et al., 2006). 

By ~9.0 ka BP, the islands of the FGB were no longer exposed 
(Fig. 2D). These foundering banks now sat on the edge of the continental 
shelf, 150 km offshore. Comparing the ages of the A. palmata samples 
from the East FGB to the sea-level curve of Toscano and Macintyre 
(2003) for the western Atlantic reveals that reef accumulation lagged 
behind rising sea level (Fig. 4). This lag placed the shallowest 
A. palmata facies in progressively deeper water. By the end of the HTM 
(~5.4 ka BP), the Laurentide ice sheet had completely melted. At that 
point, the A. palmata reef-crest facies was submerged at ~15 m below 
sea level, which was the likely maximum depth prior to drowning of 
these shallow-water facies. Because the crests of the banks were now 
submerged, there was no shallower (landward) position to which the 
A. palmata facies could backstep, and they were unable to persist in 
their deeper environment. The general mode of carbonate sedimenta
tion shifted from local retention to off-bank transport (highstand shed
ding) lowering the vertical-growth potential of the bank top. Water 
quality may have also deteriorated between 7.6 – 5.2 ka due to en
hanced Mississippi River discharge during the later portions of the 
HTM creating conditions inimical for reef growth (Tripsanas et al. 
2014). Following the HTM, temperatures in the GOM cooled 
throughout the late Holocene in conjunction with a southward 
shift in the ITCZ (Hodell et al., 1991; de Menocal et al., 2000; Haug 
et al., 2001; Poore et al., 2003). The combination of reef submergence 
(i.e., incipient drowning), reduced water quality, and cooling tem
peratures was likely responsible for the demise of A. palmata at the 
FGB. The reefs were subsequently capped by a deeper-water assem
blage dominated by massive, eurythermal corals, an assemblage that 
persists to this day. The deepening-upward sequence represents a 
‘give-up’ reef (sensu Neumann and Macintyre, 1985) and has led to 
the progressive coalescing of the relict spur-and-groove features. 

On the deeper flanks of the FGB, at N28 m depth, large fields of the del
icately branched coral M. auretenra presently dominate the benthic com
munity (Rezak et al., 1985), and are interspersed between ridges of 
plating Orbicella spp. corals (Precht et al., 2005). The Madracis fields overlie 
thick deposits composed of the skeletal remains of their conspecifics. Rezak 
et al. (1985) noted that some of these deposits also resemble large, rounded 
spur-and-groove features along the reef margin and may be as much as 
15 m thick. Underlying the Madracis-dominated assemblage, we discov
ered extensive subsurface deposits of fossil A. cervicornis admixed with 
the Madracis rubble. In places, stands of fossil A. cervicornis, many  still  in  
growth position, were exposed at the reef–water interface. These corals 
yielded late-Holocene ages of 1027–211 cal BP. The older date correlates 
with the Medieval Warm Period (MWP), and the youngest date correspond 
to the peak of the Little Ice Age (LIA; Haug et al., 2001; Mann, 2002; Richey 
et al., 2007; Mann et al., 2009). SST records using Mg/Ca ratios provide ev
idence for a cooling of ~2 °C in the northern GOM at the peak of the LIA 
(Richey et al., 2007, 2009). 

When the A. cervicornis initiated at the FGB is presently unknown, 
because the information available on the subsurface composition of 
the Holocene section is incomplete. What is known is that populations 
of A. cervicornis dominated the flanks of the FGB during the late Holo
cene, through the MWP; until they were killed by the coldest conditions 
of the LIA (see also Glynn et al., 1983). The fields of A. cervicornis were 
then replaced by a coral assemblage dominated by M. auretenra, 
which persists to this day. Similar replacement sequences of 
M. auretenra capping A. cervicornis rubble have been observed in 
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Fig. 4. Holocene sea level curve from the Caribbean (upper line) and estimated Late Pleistocene A. palmata sea-level curve (lower line) from Barbados data (modified from Toscano and 
Macintyre, 2003). A. palmata dates from this study (solid circles and blue line) plot below sea level and show a gradual deepening through time indicative of a “give-up” type reef. The 
window of the Holocene Thermal Maximum (HTM) is shown in light-blue shading (from Haug et al., 2001). Dark red line represents bathymetric cross-section A - A' across the EFGB 
from the reef cap at ~18 m to sediment plain at the base of the bank. 
Belize and Barbados (I. G. Macintyre, personal communication, 2011). 
The extremely rapid growth rates of A. cervicornis (Macintyre et al., 
1977) may also help to explain the thickness of the Holocene deposits 
on the flanks of the FGB previously described by Rezak et al. (1985). 

The recent return of A. palmata colonies to the reef caps may be a 
bellwether of climate change (Precht and Aronson, 2004). Over the 
past few decades, hundreds of species have responded to recent 
warming trends by expanding their ranges to higher latitudes, as well 
as by changing their phenologies (Walther et al., 2002; Parmesan and 
Yohe, 2003; Root et al., 2003; Berge et al., 2005; Figueria and Booth, 
2010; Fodrie et al., 2010; Hoegh-Guldberg and Bruno, 2010). The most 
parsimonious explanation for the return of A. palmata to the FGB is a 
decadal-scale increase in sea temperature (Levitus et al., 2000; Barnett 
et al., 2001; Hansen et al., 2006; Seidel et al., 2008), or a reduction in 
the frequency of extreme cold events (see Cavanaugh et al. 2013). Sim
ilar range expansions of acroporids have been observed along the east 
coast of Florida (Precht and Aronson, 2004; ARBT, 2005), in Australia 
(Marsh, 1992; Veron, 1995; Baird et al., 2012), and in Japan (Yamano 
et al., 2011). The discovery of living A. palmata at the FGB led us to pre
dict the existence of a fossil, Acropora-dominated reef underlying the 
living reef community at the FGB. Conversely, our discovery that 
A. palmata thrived on the FGB during the warmest period of the Holo
cene corroborates our explanation of why this species has returned. 

6. Conclusions 

We propose a seven-stage chronology for reef development at the FGB 
during the Holocene. First, melting of the Laurentide ice sheet 18.0 to 
12.7 ka BP inundated the coast and sequentially flooded the banks. Sec
ond, conditions favorable to reef development in the northwestern 
GOM permitted reef growth to initiate on the caps from ~12.5 to 
10.5 ka BP. Third, the HTM permitted the initiation of shallow, 
A. palmata-dominated reef facies and progressive back-stepping of reef-
margin facies from ~10.5 to 6.5 ka BP. Fourth, the drowning of 
A. palmata populations and loss of their associated facies at the end of 
the HTM led to their replacement by a ‘give-up‘facies, characterized by a 
deeper-water coral assemblage. Fifth, warm temperatures associated 
with the MWP, 1.2–0.9 ka BP allowed for the development of expansive 
thickets of A. cervicornis on the flanks of the FGB. However, when 
A. cervicornis began growing is unknown, because the information avail
able on the subsurface composition of the FGB is incomplete. Sixth, the 
demise of A. cervicornis was associated with cold-water exposure at the 
peak of the LIA, ~200 yr BP. Finally, themodern, eurythermal coral assem
blage is dominated by massive Orbicella, Montastraea, Diploria, and  Porites 
on the reef cap and branching M. auretenra on the flanks. If the newly ar
rived acroporids persist and expand, we may well witness a new stage of 
reef development that is in reality a return to the conditions of times past. 

Reefs in thermally reactive, subtropical areas are more likely than 
tropical reefs to change in species composition as the climate warms 
or cools. Specifically, the response of thermophilic Acropora species at 
the FGB to climatic changes through the Holocene provides a context 
for interpreting shifts in their geographic distribution. When conditions 
were favorable in the early to middle Holocene, acroporids dominated 
the shallow-reef community. When conditions deteriorated in the late 
Holocene, eurythermal corals rose to dominance and persisted. Com
paring the structure, anatomy, and biofacies patterns in reef-building 
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episodes of the Holocene with the living reef community suggests that 
the construction of Acropora framework could resume in marginal envi
ronments in the near future as sea temperatures rise. These discoveries 
provide timely information for managers on how the threatened 
Acropora species have responded ecologically to past climatic trends. 
These discoveries also highlight the potential utility of using paleoeco
logical records to outline possible future scenarios in a warming world. 
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